An Architectural Framework for Providing QoS in IP Differentiated Services Networks

Presented by Panos Trimintzios

Centre for Communication Systems Research
School of Electronic Engineering and Information Technology
University of Surrey, UK
Introduction and Objectives

Service Level Specifications (SLSs)
 • Contents and Semantics

Functional Architecture

SLS Management

Traffic Engineering

Policy Management

Summary
Introduction

- The Internet evolves towards the global multi-service network of the future
 - Support for end-to-end (e2e) QoS guarantees
- Need for scalable QoS solutions
- Differentiated Services (DiffServ)
 - Classify, mark and police at the edges
 - Limited per-hop behaviours (PHBs)
 - Scheduling disciplines, buffer management
 - Per-aggregate state information
- Traffic Engineering
 - Control the manner traffic is treated
 - User and network-oriented objectives
Objectives

- Current proposals focus on control and data plane mechanisms. Management plane?
 - Bandwidth Broker (BB)
- Specify the *contents and semantics* of SLSs
 - Reflect the elemental QoS-based services
- Develop an architecture for enabling *negotiation, monitoring and enforcement of SLSs* between customer/ISP and ISP/ISP
- Develop a model of co-operating components, algorithms and protocols offering a *BB solution* for fulfilling the contracted SLSs, while continuously optimizing use of network resources
SLS Contents and Semantics

- **IP Flow** - stream of IP packets sharing at least one common characteristic (**WHAT**)
 - Source, Destination, Application, DSCP info
- **Scope** - the geographical limits over which the SLS is to be enforced (**WHERE**)
 - Support for pipe, hose and funnel models
- **Traffic Envelope** - set of (conformance) parameters describing **HOW** the packet stream should look like to get performance guarantees
- **Traffic Conformance testing** - set of actions for identifying in- and out-of-profile packets
Excess Treatment - how the out-of-profile traffic is treated
 • drop, shape, remark
Performance guarantees - describe the transport guarantees the network offers to the customer
 • throughput, loss, delay, jitter
Service Schedule - indicates WHEN the SLS is active
 • Start and end time
Reliability - indicates the level of SLS assurance
 • mean downtime per year, maximum time to repair
Defining IP Transport Services

- The proposed SLSs constitute the **elemental** blocks for defining services
 - Unidirectional
 - Not necessary to quantify all the parameters
 - Also quantification using relative values (e.g. for defining Olympic services)

- Providers can choose to offer only certain predefined SLSs
 - By using limited pre-defined (ranges of) values

- More complex services can be defined, e.g.
 - Bi-directional Virtual leased lines (2 pipe SLSs)
 - Virtual Private Networks (combination of multiple hose and funnel SLSs)
Functional Architecture for Supporting QoS
Functional Architecture: Fulfilling the SLSs

- **SLSs**
 - Service description and negotiation through SLSs
 - (per-)Customer awareness

- **Policy Management**
 - SLS Management

- **Traffic Engineering**
 - Service provisioning through Traffic Engineering
 - (per-)Class awareness

- **Monitoring**

- **Data Plane**
SLS Management (cont’d)

- **SLS Subscription** between Customer-Provider
 - Customer registration and long-term policy-based admission control
 - Negotiating the right to later invoke SLSs
 - Allows the provider to *provision* the network

- **SLS Invocation** between User-Provider
 - Dynamic (per-flow) admission control based on:
 - the subscribed/provisioned SLSs
 - traffic measurements

- **Traffic Forecast** provides the estimated traffic matrix
 - Based on subscribed SLSs, measurements and (over-subscription/business) policies
 - Ties the customer- and resource-oriented parts
Traffic Engineering

- Network Dimensioning
- Dynamic Route Management
- Dynamic Resource Management

Traffic Engineering
Traffic Engineering (cont'd)

- Two Traffic Engineering approaches:
 - Explicit routed path based
 - Multi-Protocol Label Switching (MPLS)
 - Node-by-node based
 - Open Shortest Path First (OSPF)

- Operation timescales
 - Long-term (days)
 - Network Dimensioning
 - Short-term (minutes)
 - Dynamic Route and Resource Management
Traffic Engineering (cont’d)

- **Network Dimensioning**
 - Input: network topology, traffic forecast, policies
 - Objective: optimisation problem
 - Maintain low link cost while satisfying QoS objectives
 - Output in the form of configuration directives:
 - Explicitly routed paths (MPLS-based)
 - Values for the link cost metrics (IP-based)
 - Per-queue range of requirements

- **Dynamic Route Management (DRtM)**
 - Multi-path load distribution

- **Dynamic Resource Management (DRsM)**
 - Configures PHBs
 - Performs dynamic link partitioning
Policy Management

Policy Management

Policy Management Tool

Policy Storing Service

Policy Consumer

Policy Consumer

Policy Consumer
Policy Management (cont’d)

- **Policy Consumer**
 - Policy interpretation and enforcement
 - Many instances, collocated with:
 - SLS Subscription, SLS Invocation, Traffic Forecast, Network Dimensioning, DRtM, DRsM

- **Policy refinement and hierarchical decomposition**
 - High-level policies refined to reflect the hierarchical management architecture
 - Targets: managed objects of the associated component or one level below
 - The administrator defines classes of policies and refinement logic/rules
 - Automated decomposition of instances of policy classes
Functional Architecture: Detailed View

- Policy Management
 - Policy M. Tool
 - Policy Storing. Service
 - Policy Consumer.
- SLS Management
 - SLS Subscription
 - SLS Invocation
- Traffic Forecast
- Traffic Engineering
 - Network Dimensioning
 - Dynamic Route M.
 - Dynamic Resource M.
- Monitoring
 - Network Monitoring
 - Node Monitoring
- Data Plane
 - Traffic Conditioning
 - Routing.
 - PHB Enforcement
Summary

- Definition of an architecture for DiffServ-based IP QoS
- Proposed SLS content and semantics
 - IETF drafts
- Policy-driven SLS Management and Traffic Engineering
- Detailed design of algorithms and protocols
- System currently being realised
- Validation both through simulation and testbed experimentation
- Work done in the European project TEQUILA
TEQUILA: Traffic Engineering for QUality of service in the Internet at LArge scale

Partners:
Alcatel, France Telecom, Algonet, Global Crossing, University of Surrey, University College London, University of Ghent, National Technical University of Athens

For more information visit: http://www.ist-tequila.org
<table>
<thead>
<tr>
<th>Comments</th>
<th>Virtual Leased Line Service</th>
<th>Bandwidth Pipe for Data Services</th>
<th>Minimum Rate Guaranteed Service</th>
<th>Qualitative Olympic Services</th>
<th>The Funnel Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Example of a uni-directional VLL, with quantitative guarantees</td>
<td>Service with only strict throughput guarantee. TC and ET are not defined but the operator might define one to use for protection.</td>
<td>It could be used for a bulk of ftp traffic, or adaptive video with min throughput requirements.</td>
<td>They are meant to qualitatively differentiate between applications such as:</td>
<td>It is primarily a protection service; it restricts the amount of traffic entering a customer’s network.</td>
<td></td>
</tr>
</tbody>
</table>

| **Scope** | (1|1) | (1|1) | (1|1) | (1|1) or (1|N) | (N|1) or (all|1) |
|----------|-------|-------|-------|-------------|---------------|

<table>
<thead>
<tr>
<th>Flow Descriptor</th>
<th>EF, S-D IP-A</th>
<th>S-D IP-A</th>
<th>AFIx</th>
<th>MBI</th>
<th>AFIx</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Traffic Descriptor</th>
<th>(b, r) e.g. r=1</th>
<th>NA</th>
<th>(b, r)</th>
<th>(b, r), r indicates a minimum committed Olympic rate</th>
<th>(b, r)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Excess Treatment</th>
<th>Dropping</th>
<th>NA</th>
<th>Remarking</th>
<th>Remarking</th>
<th>Dropping</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Performance Parameters</th>
<th>D=20 (t=5, q=10e-3), L=0 (i.e. R=r)</th>
<th>R = 1</th>
<th>R = r</th>
<th>D=low L=low (gold/green)</th>
<th>D=med L=low (silver/green)</th>
<th>NA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Service Schedule</th>
<th>MBI, e.g. daily 9:00-17:00</th>
<th>MBI</th>
<th>MBI</th>
<th>MBI</th>
<th>MBI</th>
<th>MBI</th>
</tr>
</thead>
</table>

| **Reliability** | MBI, e.g. MDT=2 days | MBI | MBI | MBI | MBI | MBI |